Dual SIM Failover Router

Dual SIM Failover Router

The Meizo RD588 series Dual SIM 4G Ethernet wireless router is designed to offer a backup 3G/4G network when the primary network fails. The router is using Broadcom chipset, integrated with WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio...


The Meizo RD588 series Dual SIM 4G Ethernet wireless router is designed to offer a backup 3G/4G network when the primary network fails. The router is using Broadcom chipset, integrated with WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio access technologies: LTE, HSPA+, HSPA, UMTS, EDGE, CDMA2000, GPRS . By owning automatic connection monitoring and heartbeat detection, make sure the router to be always online.

The router is using Industrial Grade equipment design standards, passed CE and EMC test, stable and reliable. External antenna connectors make it possible to attach desired antennas and to easily find the best signal location. Multiple encryption protocols as L2TP, IPSec, PPTP and GRE are owned, making it ideal solution for applications in which high data bandwidth and strong stability is required.


Main Features

Hardware Specifications

Software Functions

● Support public and private APN network
● Dual SIM ensures that a backup 3G/4G network can take over should the primary network fail. The router detects a network problem and fails over to a standby SIM/APN, ensuring the customer’s SLAs are upheld.
● Dedicated hardware and software watchdog are designed to support system running reliable.
● ICMP detection and Heartbeat detection ensure the router to be always on line.
● Reboot the router remotely via SMS.
● Incorporate Virtual Router Redundancy Protocol (VRRP), facilitating 3G/4G WAN backup services to existing fixed line routers, providing both WAN and router redundancy to critical business applications.
● Offers business grade security and advanced routing features IPSec (3Des and AES), L2TP, PPTP, GRE as standard.
● Low-voltage, over current, over voltage, anti-reverse protection
● Wide Power Input DC7-36V
● Standard RS232/485 interface to connect with serial devices.
● Router Factory Default Settings can be configured freely.
● System logs can be viewed from local or remote.
● Support WLAN(300Mbps 802.11b/g/n)
● Support SNMP v1/v2/v3
● LEDS for status monitoring (showing Power, System, Internet, VPN, Signal strength).

● RAM:512Mbit FLASH:128Mbit
● Input DC 7-36V(Standard DC12V)
● Storage temperature:-40℃~80℃
● Work temperature:-30℃~70℃
● Humidity:<95%
● Unit size L*W*H:200*117.5*32.7mm
● Metal Shell, IP30
● Package weight:830g
● 2 SIM card slots
● 1 WAN 10/100Mb RJ45 port
● 4 LAN 10/100Mb RJ45 port
● 1 RS232 or RS485 serial port
● 1 5-PIN connector for GND, RX, TX, Power
● ANT1 for Cell, ANT2,3 for WiFi
● Electrostatic discharge immunity:EN6100-4-2, level 2
● RFEMS:EN6100-4-3, level 2
● Surge:EN6100-4-3, level 2
● PFMF:EN6100-4-6, level 2
● Shockwave immunity:EN6100-4-8, Horizontal / vertical direction 400A/m(>level 2)
Physical property
● Shockproof:IEC60068-2-27
● Drop test:IEC60068-2-32
● Vibration test:IEC60068-2-6

● IPSec client
● PPTP client
● L2TP server and client
● GRE client
● Transmitting power: 17dbm
● Distance:Cover a radius of 100 meters in open area test
● Allow 50 users to access in theory
DTU(Serial port data transmission)
● TCP&UDP Server/Client
● Baud rate: 300~115200bps
● Up to 4 data service center communication
● Port Mapping
● Port Triggering
● IP filtering
● MAC filtering
● URL filtering
● Manage uplink/downlink bandwidth via port or IP
● Web
● Telnet
● TR-069 platform
● Static Routing
● Policy-Based Routing.
● Dynamic Routing


Frequency  Band



WiFi (-W)



(cat6, America network)

● FDD-LTE: 2100MHz(B1),1900MHz(B2), 1800MHz(B3), AWS(B4), 850MHz(B5), 2600MHz(B7),700MHz(B12),700MHz(B13), 800MHz(B20), 1900MHz(B25), 850MHz(B26), 700MHz(B29), 2300MHz(B30),
● TDD-LTE: 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2),1800MHz(B3), 1700MHz(B4), 850MHz(B5), 900MHz(B8)

DC HSPA+:5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC

802.11n 300Mbps




US/EU standard
Input: AC100~240V
Output: DC12V


(China  Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 900MHz(B8)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 850MHz(B5), 900MHz(B8), 1800MHz(B9)
● TD-SCDMA: B34, B39

DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

RD58E (Europe  Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B20)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2), 850MHz(B5), 800MHz(B6), 900MHz(B8),

DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

(cat6, Japan  Australia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B18), 800MHz(B19), 1500MHz(B21), 700MHz(B28),
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● WCDMA: 2100MHz(B1), 850MHz(B5), 850MHz(B6), 900MHz(B8), 1700MHz(B9), 850MHz(B19)

DC-HSPA+: 5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC


What does "failover" mean?

In computing and related technologies such as networking, failover is switching to a redundant or standby computer server, system, hardware component or network upon the failure or abnormal termination of the previously active application,[1] server, system, hardware component, or network. Failover and switchover are essentially the same operation, except that failover is automatic and usually operates without warning, while switchover requires human intervention.

Systems designers usually provide failover capability in servers, systems or networks requiring near-continuous availability and a high degree of reliability.

At the server level, failover automation usually uses a "heartbeat" system that connects two servers, either through using a separate cable (for example, RS-232serial ports/cable) or a network connection. As long as a regular "pulse" or "heartbeat" continues between the main server and the second server, the second server will not bring its systems online. There may also be a third "spare parts" server that has running spare components for "hot" switching to prevent downtime. The second server takes over the work of the first as soon as it detects an alteration in the "heartbeat" of the first machine. Some systems have the ability to send a notification of failover.

Certain systems, intentionally, do not failover entirely automatically, but require human intervention. This "automated with manual approval" configuration runs automatically once a human has approved the failover.

Failback is the process of restoring a system, component, or service previously in a state of failure back to its original, working state, and having the standby system go from functioning back to standby.

The use of virtualization software has allowed failover practices to become less reliant on physical hardware through the process referred to as migration in which a running virtual machine is moved from one physical host to another, with little or no disruption in service.

Computer scientists talk about active and passive replication in systems that replicate data or services:

· active replication is performed by processing the same request at every replica.

· passive replication involves processing each single request on a single replica and then transferring its resultant state to the other replicas.

If at any time one master replica is designated to process all the requests, then we are talking about the primary-backup scheme (master-slave scheme) predominant in high-availability clusters. On the other side, if any replica processes a request and then distributes a new state, then this is a multi-primaryscheme (called multi-master in the database field). In the multi-primary scheme, some form of distributed concurrency control must be used, such as distributed lock manager.

Load balancing differs from task replication, since it distributes a load of different (not the same) computations across machines, and allows a single computation to be dropped in case of failure. Load balancing, however, sometimes uses data replication (especially multi-master replication) internally, to distribute its data among machines.

Backup differs from replication in that it saves a copy of data unchanged for a long period of time.[3] Replicas, on the other hand, undergo frequent updates and quickly lose any historical state. Replication is one of the oldest and most important topics in the overall area of distributed systems.

Whether one replicates data or computation, the objective is to have some group of processes that handle incoming events. If we replicate data, these processes are passive and operate only to maintain the stored data, reply to read requests, and apply updates. When we replicate computation, the usual goal is to provide fault-tolerance. For example, a replicated service might be used to control a telephone switch, with the objective of ensuring that even if the primary controller fails, the backup can take over its functions. But the underlying needs are the same in both cases: by ensuring that the replicas see the same events in equivalent orders, they stay in consistent states and hence any replica can respond to queries.

Hot Tags: dual SIM failover router, suppliers, manufacturers, factory, buy, customized, price


Related Products

Products List