4G SIM Router

4G SIM Router

The Meizo R58 outdoor 4G router CPU is using Industrial Grade equipment design standards, passed CE, FCC and EMC test, stable and reliable. Multiple VPN encryption protocols as L2TP, IPSec, PPTP and GRE are owned, making it readily ideal for delivering optimal network connectivity to all oil and...

Description

The Meizo R58 outdoor 4G router CPU is using Industrial Grade equipment design standards, passed CE, FCC and EMC test, stable and reliable. Multiple VPN encryption protocols as L2TP, IPSec, PPTP and GRE are owned, making it readily ideal for delivering optimal network connectivity to all oil and mining site, as well as serving as the reliable communication backbones for critical communication applications. Instant POS Setup for Credit Card Access in Remote Area . Its CPU is using Broadcom chipset, integrated with industrial grade 4G modem, offering WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio access technologies: LTE, HSPA+, HSPA, UMTS, EDGE, CDMA2000, GPRS . By owning automatic connection monitoring and heartbeat detection, make sure the router to be always online.


The R58 4G/LTE products have thousands of installed bases in China, North America,  South East Asia, Africa and other areas, too. Our outdoor 4G/LTE routers offer superior RF and antenna engineering for maximum LTE performance, as well as comprehensive networking solutions that are ready to be utilized in a diversity of revenue generating applications and vertical markets.

image001.jpg


Main Features

Hardware Specifications

Software Functions

● Support public and private APN network
● Dual SIM ensures that a backup 3G/4G network can take over should the primary network fail. The router detects a network problem and fails over to a standby SIM/APN, ensuring the customer’s SLAs are upheld.
● Dedicated hardware and software watchdog are designed to support system running reliable.
● ICMP detection and Heartbeat detection ensure the router to be always on line.
● Reboot the router remotely via SMS.
● Incorporate Virtual Router Redundancy Protocol (VRRP), facilitating 3G/4G WAN backup services to existing fixed line routers, providing both WAN and router redundancy to critical business applications.
● Offers business grade security and advanced routing features IPSec (3Des and AES), L2TP, PPTP, GRE as standard.
● Low-voltage, over current, over voltage, anti-reverse protection
● Wide Power Input DC7-36V
● Standard RS232/485 interface to connect with serial devices.
● Router Factory Default Settings can be configured freely.
● System logs can be viewed from local or remote.
● Support WLAN(300Mbps 802.11b/g/n)
● Support SNMP v1/v2/v3
● LEDS for status monitoring (showing Power, System, Internet, VPN, Signal strength).

CPU
● RAM:512Mbit FLASH:128Mbit
Power
● Input DC 7-36V(Standard DC12V)
Environment
● Storage temperature:-40℃~80℃
● Work temperature:-30℃~70℃
● Humidity:<95%
Dimension
● Unit size L*W*H:200*117.5*32.7mm
● Metal Shell, IP30
● Package weight:830g
Interface
● 2 SIM card slots
● 1 WAN 10/100Mb RJ45 port
● 4 LAN 10/100Mb RJ45 port
● 1 RS232 or RS485 serial port
● 1 5-PIN connector for GND, RX, TX, Power
Antenna(female)
● ANT1 for Cell, ANT2,3 for WiFi
EMC
● Electrostatic discharge immunity:EN6100-4-2, level 2
● RFEMS:EN6100-4-3, level 2
● Surge:EN6100-4-3, level 2
● PFMF:EN6100-4-6, level 2
● Shockwave immunity:EN6100-4-8, Horizontal / vertical direction 400A/m(>level 2)
Physical property
● Shockproof:IEC60068-2-27
● Drop test:IEC60068-2-32
● Vibration test:IEC60068-2-6

VPN
● IPSec client
● PPTP client
● L2TP server and client
● GRE client
WIFI
● Transmitting power: 17dbm
● Distance:Cover a radius of 100 meters in open area test
● Allow 50 users to access in theory
DTU(Serial port data transmission)
● TCP&UDP Server/Client
● Baud rate: 300~115200bps
● Up to 4 data service center communication
NAT
● Port Mapping
● Port Triggering
● DMZ
Firewall
● IP filtering
● MAC filtering
● URL filtering
QOS
● Manage uplink/downlink bandwidth via port or IP
Management
● Web
● Telnet
● TR-069 platform
Routing
● Static Routing
● Policy-Based Routing.
● Dynamic Routing



Model

Frequency  Band

Bandwidth(UL/DL)

Consumption

WiFi (-W)

Serial(-S)

Power

RD58A
(cat6, America network)

● FDD-LTE: 2100MHz(B1),1900MHz(B2), 1800MHz(B3), AWS(B4), 850MHz(B5), 2600MHz(B7),700MHz(B12),700MHz(B13), 800MHz(B20), 1900MHz(B25), 850MHz(B26), 700MHz(B29), 2300MHz(B30),
● TDD-LTE: 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2),1800MHz(B3), 1700MHz(B4), 850MHz(B5), 900MHz(B8)

FDD-LTE:50Mbps/300Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC

802.11n 300Mbps

Option

RS232/RS485

Option

US/EU standard
Input: AC100~240V
Output: DC12V

Option

RD58C
(China  Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 900MHz(B8)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 850MHz(B5), 900MHz(B8), 1800MHz(B9)
● TD-SCDMA: B34, B39

FDD-LTE:50Mbps/150Mbps
TDD-LTE:10Mbps/112Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

RD58E (Europe  Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B20)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2), 850MHz(B5), 800MHz(B6), 900MHz(B8),

FDD-LTE:50Mbps/150Mbps
TDD-LTE:10Mbps/112Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

RD58J
(cat6, Japan  Australia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B18), 800MHz(B19), 1500MHz(B21), 700MHz(B28),
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● WCDMA: 2100MHz(B1), 850MHz(B5), 850MHz(B6), 900MHz(B8), 1700MHz(B9), 850MHz(B19)
● TD-SCDMA: B39

FDD-LTE:50Mbps/300Mbps
TDD-LTE:10Mbps/112Mbps
DC-HSPA+: 5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC


Difference between LTE FDD vs TDD LTE

TDD and FDD are two topologies by which critical resources time and frequency are shared among mobile subscribers or terminals. LTE uses both of these flavors to provide facility for the mobile subscribers or UEs to utilize the scarse resource efficiently based on the need. To know more about TDD vs FDD refer our article on Difference between TDD and FDD topologies.

Let us understand LTE FDD and TDD LTE versions with figures and band example below. LTE has radio frame of duration 10ms consisting of 10 subframes. Each subframe has two slots. The slot is of 0.5ms duration.Hence there are total 20 slots in a radio frame.


LTE FDD

image003.jpg

In LTE base station is referred as eNodeB and mobile subscriber is referred as UE. The figure-1 describes LTE FDD scenario. As shown in the figure f1 and f2 are one pair of frequencies allocated separately for both the uplink and downlink direction.

Figure mentions LTE band-13 with uplink frequency of range 777 to 787MHz and downlink frequency of range 746 to 756 MHz. Hence f1 is allocated from uplink band and f2 is allocated from downlink frequency band. The entire radio frame of 10ms is used simultaneously over downlink and uplink directions.

Pls. note that downlink always refers to transmission from LTE eNodeB to UEs and uplink refers to transmission from UEs to eNodeB. Both uplink and downlink will have 10MHz bandwidth each on which entire frame will be used.


TDD LTE

image005.jpg

The figure-2 describes TDD LTE scenario.As shown in the figure both uplink and downlink has been allocated same frequency f1 and but both uses different time slots for mapping their information data.

Figure mentions LTE band-33 which is from frequency 1900 to 1920MHz. Entire bandwidth of 20MHz is used for both eNodeB and UEs. Figure mentions configuration of radio frame time slots 0 to 9 for UL/DL configuration of zero and 5ms DL/UL switch point periodicity. It is D,S,U,U,U,D,S,U,U,U. Here D stands for downlink and U stands for uplink.Hence the subframes of the entire radio frame is divided and used for both the uplink and downlink direction.

Leading chipset manufacturers such as Ericsson,Altair semiconductor,Qualcomm support both TDD and FDD versions of LTE on a single chip.

Following table summarizes LTE FDD and TDD versions.It compares both with respect to application,frame structure, Guard period,frequency band,interference,data rate and interoperability with other RATs.


Feature

LTE FDD

TDD LTE

Application

FDD version is used where both uplink and downlink data rates are symmetrical.

TDD version is used where both uplink and downlink data rates are asymmetrical.

Frame structure

Uses FDD frame structure

Uses TDD frame structure, READ MORE

Guard periods

Not provided,every downlink subframe can be associated with an uplink subframe.

Provided in the center of special subframes and used for the advance of the uplink transmission timing. The no. of downlink and uplink subframes is different

Frequency bands

REFER >LTE Frequency Bands for FDD frequency ranges

REFER LTE Frequency Bands for TDD frequency ranges

Interference

Interference between neighbouring base stations less as transmission and reception is done on seperate frequencies.

Interference between neighboring base stations more, as transmission and reception is done on the same frequency.

Peak Downlink data rate for FDD/TDD LTE

Minimum: 1.728 Mbps with 1.4MHz BW,6 RBs, QPSK modulation,
Maximum: 345.6 Mbps with 20MHz,100 RBs, 64QAM,4X4 MIMO

Peak Uplink data rate for TDD/LTE FDD

Minimum: 1.8 Mbps with 1.4MHz BW, 6 RBs, QPSK modulation,
Maximum: 86.4 Mbps with 20MHz BW, 100 RBs, 64QAM modulation

Working with other RAT

Interference will be higher than TD version

TDD LTE works well with minimum interference along with TD-SCDMA RAT


Both LTE FDD and TDD versions have their own applications and the same can be exploited by telecom operators based on traffic and other requirements.

Hot Tags: 4G SIM router, suppliers, manufacturers, factory, buy, customized, price

Feedback

Related Products

Products List